Trimethylamine-Trimethylphosphine-Pentaborane(9)

Andreas Schwarz and Goji Kodama*

Department of Chemistry, University of Utah, Salt Lake City, Utah 84112

Received March 9, 1993

Pentaborane(9) reacts with trimethylphosphine to form $B_5H_9 \cdot 2P(CH_3)_3$.¹ In the process of this bis(phosphine) adduct formation, no evidence has been found for the formation of a 1:1 adduct, B_5H_9 , $P(CH_3)_3$, even when $P(CH_3)_3$ was mixed with excess B_5H_9 . On the other hand, in the processes of $B_4H_8 \cdot 2P(CH_3)_3^2$ and B_6H_{10} ·2P(CH₃)₃ formation, the respective mono(phosphine) adducts, B_4H_8 ·P(CH₃)₃² and B_6H_{10} ·P(CH₃)₃⁴, were produced as precursors. The mono(trimethylphosphine) adduct of B₅H₉ was first reported by Long in 1973 as a decomposition product of unstable B_6H_{12} ·P(CH₃)₃.⁵

$$B_6H_{12} + P(CH_3)_3 \rightarrow B_6H_{12} \cdot P(CH_3)_3 \rightarrow B_3H_9 \cdot P(CH_3)_3 + \frac{1}{2}B_2H_6$$
(1)

The molecular structures of the two $P(CH_3)_3$ adducts of B_5H_9 are illustrated as follows:5-7

Subsequently, two other reactions were reported from our laboratory for the formation of B_5H_9 ·P(CH₃)₃. These were based on the borane cluster expansion by $B_2H_4 \cdot 2P(CH_3)_3^{7,8}$ as indicated in the following equations (eqs 2 and 3). However, none of these

 $B_4H_8 PH_3 + B_2H_4 2P(CH_3)_3 \longrightarrow$

$$B_5H_9 \cdot P(CH_3)_3 + BH_3 \cdot P(CH_3)_3 + PH_3$$
 (3)⁸

three reactions (eqs 1-3) can be used conveniently for the preparation of B_5H_9 ·P(CH₃)₃; the yields are low, and the starting compounds are not readily accessible. A better preparative method is desired for the reactivity studies of the compound. Therefore, we took a closer look at the behavior of bis(base)

- (1) (a) Denniston, M. L.; Shore, S. G. Abstracts of Papers; 158th Meeting of the American Chemical Society, New York, Sept 1969; American Chemical Society: Washington, DC, 1969; INOR 104. (b) Savory, C. G.; Wallbridge, M. G. H. J. Chem. Soc., Dalton Trans. 1973, 179.
 (2) Kodama, G.; Kameda, M. Inorg. Chem. 1979, 18, 3302.
 (3) Mangion, M.; Hertz, R. K.; Denniston, M. L.; Long, J. R.; Clayton, W.
- R.; Shore, S. G. J. Am. Chem. Soc. 1976, 98, 449.
- 4) Kameda, M.; Kodama, G. Inorg. Chem. 1981, 20, 1072.
- (5) Long, J. R. Ph.D. Dissertation, The Ohio State University, Columbus,
- OH, 1973; p 62. (6) Fratini, A. V.; Sullivan, G. W.; Denniston, M. L.; Hertz, R. K.; Shore, S. G. J. Am. Chem. Soc. 1974, 96, 3013. (7) Kameda, M.; Kodama, G. Inorg. Chem. 1982, 21, 1267.
- (8) Jock, C. P.; Kameda, M.; Kodama, G. Inorg. Chem. 1990, 29, 570.

adducts of B_5H_9 , and formulated a method feasible for the preparation of $B_5H_9 \cdot P(CH_3)_3$.

Results

A. Reaction of B₅H₉·2N(CH₃)₃ with P(CH₃)₃. When $B_5H_9 \cdot 2N(CH_3)_3$ was treated with $P(CH_3)_3$ in a 1:1 molar ratio in toluene or dichloromethane at room temperature, a mixture consisting of B₅H₉·2P(CH₃)₃, B₅H₉·2N(CH₃)₃, and a smaller quantity of $B_5H_9 \cdot P(CH_3)_3 \cdot N(CH_3)_3$ was produced first. Then, the amount of B_5H_9 ·P(CH₃)₃·N(CH₃)₃ in the mixture slowly increased at the expense of the other two adducts. Within 2 h, B_5H_9 ·P(CH₃)₃·N(CH₃)₃ became the major component of the mixture. A small amount of BH₃·N(CH₃)₃ was produced also. The following equations (eqs 4-6) are appropriate for the above observation.

$${}^{1}/{}_{2}B_{5}H_{9}\cdot 2N(CH_{3})_{3} + P(CH_{3})_{3} \rightarrow {}^{1}/{}_{2}B_{5}H_{9}\cdot 2P(CH_{3})_{3} + N(CH_{3})_{3} (4)$$
$${}^{1}/{}_{2}B_{5}H_{9}\cdot 2N(CH_{3})_{3} + {}^{1}/{}_{2}B_{5}H_{9}\cdot 2P(CH_{3})_{3} \rightarrow {}^{B}_{5}H_{9}\cdot P(CH_{3})_{3}\cdot N(CH_{3})_{3} (5)$$

 $B_{5}H_{9} \cdot P(CH_{3})_{3} \cdot N(CH_{3})_{3} + N(CH_{3})_{3} \rightarrow$ $BH_3 \cdot N(CH_3)_3$ + unidentified borane compounds (6)

B. Formation of B₅H₉·P(CH₃)₃ from B₅H₉·2P(CH₃)₃. When equimolar quantities of B_5H_9 and $P(CH_3)_3$ (0.41 mmol each) were mixed in toluene, a 1:1 mixture of B_5H_9 -2P(CH₃)₃ and B_5H_9 was produced. A mixture prepared in this manner remains unchanged for several hours. However, when a small quantity (0.07 mmol) of N(CH₃)₃ was added to the mixture, B_5H_9 ·P- $(CH_3)_3$ was slowly produced in the solution; within 1 h after the addition of the amine, the ¹¹B NMR signals of B₅H₉·P(CH₃)₃ were clearly seen along with the signals of B₅H₉ and B₅H₉·2P-(CH₃)₃. A weak signal of BH₃·N(CH₃)₃ was also discernible. The amount of B_5H_9 ·P(CH₃)₃ slowly increased, and after 5 days, the molar ratio B_5H_9 ·P(CH₃)₃/B₅H₉/B₅H₉·2P(CH₃)₃ was about 1.0/1.0/0.8. The ratio did not change significantly thereafter. However, signals of unidentified borane compounds became noticeably strong.

C. Preparation of B₅H₉·P(CH₃)₃·N(CH₃)₃. The observation and interpretation described in section A suggested that B₅H₉·P- $(CH_3)_3 \cdot N(CH_3)_3$ would be produced if B_5H_9 , $P(CH_3)_3$ and $N(CH_3)_3$ were mixed in a 1:1:1 molar ratio. Indeed, when 1.39 (± 0.01) mmol each of the three reagents were mixed in 3 mL of toluene, the conversion into $B_5H_9 \cdot P(CH_3)_3 \cdot N(CH_3)_3$ was complete within 17 h at room temperature. Removal of the solvent by pumping gave a white solid of B_5H_9 ·P(CH₃)₃·N(CH₃)₃. The product could be used, without purification, for the synthesis of $B_5H_9 \cdot P(CH_3)_3$ which is described in section D.

NMR Spectra of B₅H₉·P(CH₃)₃·N(CH₃)₃. The ¹¹B{¹H} NMR spectra of B_5H_9 ·P(CH₃)₃·N(CH₃)₃ in toluene at -30 and +20 °C are shown in Figure 1. The shift values at +20 °C are -8.4 (B₂), -19.0 (B₄), -25.5 (B_{3.5}), and -56.7 (B₁) ppm relative to the BF₃·O- $(C_2H_5)_2$ signal. The ¹H spin-coupled spectrum showed no fine structure on any of the signals. The data are in fair agreement with those reported by Long,⁹ except that the current data show the details owing to the use of a higher field instrument. The coalesced signal of the $B_{3,5}$ atoms at -25.5 ppm is split into two signals (-21.2 and -29.2 ppm) at -30 °C. The nonrigidity of the molecule appears to be suppressed in dichloromethane. Thus, in this solvent the B_3 and B_5 signals are not coalesced at +20 °C, and appear at -22.3 and -28.9 ppm, other signals being at -7.2 (B_2) , -19.5 (B_4) and -56.2 (B_1) ppm. In Table I the above shift values are compared with those of related borane adducts. Noted

0020-1669/93/1332-3970\$04.00/0

Reference 5, p 72. The compound was prepared by the reaction of (9) $B_5H_9 \cdot P(CH_3)_3$ with $N(CH_3)_3$.

Table I. Comparison of ¹¹B NMR Shift Values (in ppm⁴) for B₅H₉·P(CH₃)₃·N(CH₃)₃ and Related P(CH₃)₃ Adducts

B ₅ H ₉ ·P(CH ₃) ₃ ^b	-4.2 (B _{2,3,4,5})				-52.6 (B ₁)
B ₅ H ₉ ·2P(CH ₃) ₃ ^c		-19.8 (B ₄)	-25.4 (B _{3,5})	-32.4 (B ₂)	-56.1 (B ₁)
B ₅ H ₉ ·P(CH ₃) ₃ ·N(CH ₃) ₃	-7.2 (B ₂)	-19.0 (B ₄)	-25.6^{d} (B _{3.5})		-56.7 (B ₁)
BH ₃ ·P(CH ₃) ₃ ^e				-37.0	
BH ₂ N(CH ₂)	-8.1				

^a (C₂H₅)₂O·BF₃ as standard. ^b Reference 7. ^c Reference 12. ^d The average of the B₃ and B₅ signals is taken. ^e Eaton, G. R.; Lipscomb, W. N. NMR Studies of Boron Hydrides and Related Compounds; W. A. Benjamin: New York, 1969; p 460. J Ibid., p 459.

-20 -40 -60 PPM

Figure 1. ¹¹B{ⁱH} NMR spectra of B₅H₉·P(CH₃)₃·N(CH₃)₃ in toluene at (a) -30 °C and (b) +20 °C. The sample was a mixture of B₅H₉, $P(CH_3)_3$, and $N(CH_3)_3$ in a 1:1:1 molar ratio, and was allowed to stand at room temperature for 24 h before the spectra were recorded. The small hump at -32.4 ppm is the B₂ signal of B₅H₉·2P(CH₃)₃. Shown on the right is the proposed structure of B_5H_9 ·P(CH₃)₃·N(CH₃)₃, which is drawn after the structure of B₅H₉·2P(CH₃)₃.

in the table, in going from $B_5H_9 \cdot 2P(CH_3)_3$ to $B_5H_9 \cdot P(CH_3)_3 \cdot N$ - $(CH_3)_3$, are that the shifts of the B₁, B_{3,5} and B₄ atoms change little and that the shift and its change of the B_2 atom are reminiscent of those for the BH₃ adducts.

D. Preparation of B₅H₉·P(CH₃)₃. Treatment of B₅H₉·P- $(CH_3)_3 \cdot N(CH_3)_3$ with B_2H_6 in toluene resulted in the quantitative formation of B_5H_9 ·P(CH₃)₃.

$$B_{5}H_{9} \cdot P(CH_{3})_{3} \cdot N(CH_{3})_{3} + \frac{1}{2}B_{2}H_{6} \rightarrow B_{5}H_{9} \cdot P(CH_{3})_{3} + BH_{3} \cdot N(CH_{3})_{3}$$
(7)

The trimethylamine-borane(3) in the product mixture could be removed by sublimation at 0 °C, and the resulting residue was sublimed at room temperature to obtain a pure sample of B_5H_9 -P- $(CH_3)_3$ in a 80% overall yield based on the amount of B_5H_9 initially employed. An overall synthesis of B_5H_9 ·P(CH₃)₃ in a larger scale is described in the Experimental Section.

E. Reactions of B₅H₉·P(CH₃)₃. (a) Protolysis. When treated with methanol in dichloromethane at 0 °C, $B_{5}H_{9}$ ·P(CH₃)₃ gave B₄H₈·P(CH₃)₃ according to

$$B_{5}H_{9} \cdot P(CH_{3})_{3} + CH_{3}OH \rightarrow B_{4}H_{8} \cdot P(CH_{3})_{3} + "CH_{3}OBH_{2}" (8)$$

The co-product "CH₃OBH₂" underwent further reactions, giving off H_2 gas, to finally produce $B(OCH_3)_3$. The reaction with water proceeded similarly to give $B_4H_8 \cdot P(CH_3)_3$.

The reaction of B_5H_9 ·P(CH₃)₃ with HCl in tetrahydrofuran proceeded at -80 °C to give B₄H₈·P(CH₃)₃ and BH₂Cl·THF. However, in dichloromethane, the reaction gave a complex mixture of borane compounds including B_2H_6 , chlorodiboranes, B_4H_8 -P- $(CH_3)_3$, B_3H_7 , $P(CH_3)_3$ and others. The observed pattern of these HCl reactions paralleled that of B_4H_8 ·P(CH₃)₃.¹⁰

(b) Hydride Elimination with BCl₃. Boron trichloride readily reacted with B_5H_9 ·P(CH₃)₃ at -80 °C to give the B_5H_8 ·P(CH₃)₃+ salt of the HBCl3⁻ anion, which could subsequently be converted into the BCl₄- salt by treatment with HCl. This reactivity of B_5H_9 ·P(CH₃)₃ toward BCl₃ provided an improved route for the preparation of the B_5H_8 ·P(CH₃)₃⁺ cation.¹¹

Discussion

Formation of B₅H₉·P(CH₃)₃·N(CH₃)₃. The key finding in this study was the ligand exchange between $B_5H_9 \cdot 2P(CH_3)_3$ and B_5H_9 ·2N(CH₃)₃ that led to the virtually quantitative conversion into $B_5H_9 \cdot P(CH_3)_3 \cdot N(CH_3)_3$. The reaction of $B_5H_9 \cdot 2N(CH_3)_3$ with excess $P(CH_3)_3$ was known to produce $B_5H_9 \cdot 2P(CH_3)_3$.^{1b,12} Trimethylphosphine being a stronger base than $N(CH_3)_3$, the displacement of $N(CH_3)_3$ by the phosphine is naturally expected. However, even when $P(CH_3)_3$ was used in a deficient amount, e.g., a 1:1 molar ratio, the initial major products were B₅H₉·2P- $(CH_3)_3$ and B_5H_9 , $2N(CH_3)_3$. This pattern is reminiscent of that of the reaction of B_5H_9 with $P(CH_3)_3$ in a 1:1 molar ratio, where a 1:1 mixture of B₅H₉·2P(CH₃)₃ and B₅H₉ is produced. The strong nucleophilicity of $P(CH_3)_3$ is thought to be responsible for the initial, preferential formation of $B_5H_9 \cdot 2P(CH_3)_3$ in these reactions. The B_5H_9 ·P(CH₃)₃·N(CH₃)₃ formation that follows is the equilibration which is triggered by $N(CH_3)_3$. The amine that is needed for the process is provided by the dissociation of $B_5H_9 \cdot 2N(CH_3)_3$,¹³ $B_5H_9 \cdot P(CH_3)_3 \cdot N(CH_3)_3$, and, to a lesser extent, B_5H_9 ·N(CH₃)₃.

Preparation of B₅H₉·P(CH₃)₃. Generally, the second base in a bis(base) adduct of borane is bonded less strongly than the first. Thus, the following two reactions have been observed for the bis(base) adducts of B₄H₈:

$$B_4H_8 \cdot 2N(CH_3)_3 \rightarrow B_4H_8 \cdot N(CH_3)_3 + N(CH_3)_3 (above 0 °C) (9)^{14}$$

$$B_4H_8 \cdot 2P(CH_3)_3 + \frac{1}{_2}B_2H_6 \rightarrow B_4H_8 \cdot P(CH_3)_3 + BH_3 \cdot P(CH_3)_3 (10)^{10}$$

However, B_5H_9 is a stronger borane acid than B_4H_8 .¹⁵ Therefore, the second bases in the corresponding B_5H_9 adducts are held more strongly than those in the B_4H_8 adducts. Thus, B_5H_9 ·2N- $(CH_3)_3$ can be isolated at room temperature¹ and, contrary to eq 10, treatment of B_5H_{9} -2P(CH₃)₃ with B_2H_6 results in the formation of a complex mixture of borane compounds including B₅H₉·P-(CH₃)₃, B₄H₈·P(CH₃)₃, B₃H₇·P(CH₃)₃, BH₃·P(CH₃)₃, B₅H₉, $B_3H_6 \cdot 2P(CH_3)_3^+$ and $B_3H_8^{-16}$ Apparently, the strong B-P bond in B_5H_9 ·2P(CH₃)₃ prohibits the facile displacement of the second $P(CH_3)_3$ by B_2H_6 , and other complex reaction patterns set in. However, $N(CH_3)_3$ being a weaker base can be removed readily from $B_5H_9 \cdot P(CH_3)_3 \cdot N(CH_3)_3$ by the B_2H_6 treatment. Although treatment of B_5H_9 •P(CH₃)₃•N(CH₃)₃ with BF₃ does the same, the isolation of B_5H_9 ·P(CH₃)₃ is made difficult by the low volatility of $BF_3 \cdot N(CH_3)_3$, and by the side reactions that involve F-H exchange.

Experimental Section

General Experimental Procedure. Conventional high-vacuum line techniques were used for the handling of volatile compounds. Solids of $B_5H_9 \cdot P(CH_3)_3 \cdot N(CH_3)_3$ and $B_5H_9 \cdot P(CH_3)_3$ were handled in polyethylene

- (11) Kameda, M.; Kodama, G. Inorg. Chem. 1987, 26, 2011.
- Kameda, M.; Kodama, G. Inorg. Chem. 1980, 19, 2288.
- The dissociative nature of B₃H₉·2N(CH₃)₃ has been reported earlier. [See, for example: Burg, A. B. J. Am. Chem. Soc. 1957, 79, 2129.] (13) Diborane(6) is known to displace B₅H₉ from B₅H₉·2N(CH₃)₃. [Onak, T.; Drake, R. P.; Searcy, I. W. Chem. Ind. 1964, 1865.] (14) Dodds, A. R.; Kodama, G. Inorg. Chem. 1979, 18, 1465
- Parry, R. W.; Edwards, L. J. J. Am. Chem. Soc. 1959, 81, 3554.
- (16) Kameda, M.; Kodama, G. Unpublished observation.

⁽¹⁰⁾ Kameda, M.; Shimoi, M.; Kodama, G. Inorg. Chem. 1984, 23, 3705.

bags filled with dry nitrogen gas. Pentaborane(9), $P(CH_3)_3$, and $N(CH_3)_3$ were laboratory stock which were described elsewhere.¹⁷ Samples of bis(trimethylamine)-pentaborane(9) were prepared,^{1b} as needed, in the reaction tubes which are described below. Reagent grade toluene was refluxed over calcium hydride and had been stored over the hydride in a flask which was equipped with a Teflon valve.

For the investigation of behaviors of the B_5H_9 adducts, normally a 0.1-0.3 mmol quantity of the borane compound was dissolved in 1-3 mL of the solvent in a 9- or 14-mm-o.d. Pyrex tube, unless mentioned otherwise. The tube was then sealed with a torch if not equipped with a Teflon valve. The reaction tube was inserted into the probe of an NMR spectrometer (Varian XL-300 or FT-80A) to monitor the progress of the reaction.

A Larger Scale Preparation of B_3H_9 ·P(CH₃)₃. A 0.9655-g (15.30mmol) sample of B_5H_9 was taken in a 50-mL long-necked, round-bottom flask on the vacuum line and was dissolved in 15 mL of toluene. Then, a 0.9163-g (15.50-mmol) sample of N(CH₃)₃ and a 1.1675-g (15.35mmol) sample of P(CH₃)₃ were condensed, in the given order, into the flask at -197 °C. As the mixture was allowed to slowly warm with continuous stirring to room temperature, a white precipitate formed. Five hours later, the mixture was a clear solution with a slight tinge of yellow.

After following the above reaction mixture to stand for 24 h at room temperature, the flask was cooled to -197 °C to condense another 15-mL portion of toluene and a 7.93-mmol sample of B₂H₆ into the flask. Then,

the flask was allowed to warm slowly to 0 °C while the pressure was carefully monitored on a manometer. The initial pressure rise due to B₂H₆ vaporization was followed by a slow pressure drop which lasted for 20 min. Successive cooling and warming of the flask between -197 °C and room temperature were repeated several times to ensure the complete reaction. During this reaction time, no noncondensable gas was produced. Then, the solvent and other volatile components were pumped out briefly from the flask at room temperature, and the flask containing a solid residue was attached to a sublimation apparatus.¹⁸ The flask was exposed to the ambient temperature of 28 °C, and the condensation chamber of the sublimation unit was immersed in an ice bath. The co-product, BH₁·N-(CH₃)₃, and a small amount of remaining solvent were pumped through the apparatus while $B_5H_9 \cdot P(CH_1)_3$ was condensed on the wall of the condensation chamber. The sublimation was continued for 40 h. A small amount of yellow residue remained in the reaction flask. The product that was collected in the sublimation unit was washed into a weighing flask with toluene in the manner which was described elsewhere.¹⁸ Yield of sublimed B₅H₉·P(CH₃)₃: 1.738 g (12.49 mmol) or 82%. The compound is sensitive to moisture as described in part E of the Results and should be handled in a dry atmosphere.

Acknowledgment. We are grateful to the "German Academic Exchange Service" (DAAD) for financial support to A.S. for his study abroad at the University of Utah.

⁽¹⁷⁾ See, for example: Ishii, M.; Kodama, G. Inorg. Chem. 1990, 29, 2181 and refs 10 and 14.

⁽¹⁸⁾ Kameda, M.; Driscoll, J. A.; Kodama, G. Inorg. Chem. 1990, 29, 3791.